
The C++ Scalar, Vector, Matrix and Tensor
classes

Copyright c©1998
E. Robert Tisdale

January 15, 2002

Abstract

This document describes an application programmer’s interface stan-
dard for class libraries that provide high performance arithmetic on dense
vector, matrix and tensor objects to support portable scientific and engi-
neering applications including digital signal and image processing applica-
tions. The interface is easy to learn and use because the design follows
simple, regular rules with a few exceptions that application programmers
can quickly memorize. It provides a small number of simple functions which
are combined in expressions to compute more complicated functions and
simply extends many familiar C language scalar operations and functions
to vector, matrix and tensor objects element by element. The C++ Scalar,
Vector, Matrix and Tensor classes permit programmers to write reliable
high-performance applications clearly and concisely so that they are easy
to read, understand and maintain. They are designed to detected most pro-
gramming errors at compile-time. Optional run-time error checking code
can be compiled and/or linked into the application program to detect any
remaining programming errors during testing.

Only Scalar and Vector classes support an offset type but all Scalar,
Vector, Matrix and Tensor classes support a boolean type. Real Scalar,
Vector, Matrix and Tensor classes are specified for both signed and unsigned
built-in integral types char, short int, int and long int. Both real and
complex Scalar, Vector, Matrix and Tensor classes are specified for built in
floating-point types float, double and long double. Some non-standard
implementations may also provide both real and complex fixed-point Scalar,
Vector, Matrix and Tensor classes.

i

Contents

1 Introduction 1

2 Class Libraries 4

2.1 Complex classes . 4

2.1.1 Constructors . 4

2.1.2 Functions . 4

2.1.3 Operators . 5

2.2 Handle classes . 6

2.2.1 Constructors . 6

2.2.2 Functions . 6

2.2.3 Operators . 7

2.3 SubScalar, SubVector, SubMatrix and SubTensor classes 7

2.3.1 Constructors . 7

2.3.2 Functions . 8

2.3.3 Operators . 26

2.4 SubArray0, SubArray1, SubArray2 and SubArray3 classes 32

2.4.1 Constructors . 32

2.4.2 Functions . 33

2.5 Vector, Matrix and Tensor classes 33

2.5.1 Constructors . 33

2.5.2 Functions . 35

2.6 SubSquare and Square (Matrix) classes 35

2.6.1 SubSquare classes . 35

2.6.2 Square classes . 37

3 Convention 37

4 Error Detection 40

5 Optimization 41

ii

1 Introduction

It isn’t practical for any single organization to develop and maintain a high per-
formance scalar, vector, matrix and tensor arithmetic library that will port to
every computing platform which is targeted for scientific and engineering ap-
plications. The C++ SVMT (Scalar, Vector, Matrix and Tensor) class library
standard allows development and maintenance costs to be distributed among a
variety of independent SVMT class library developers who provide application
programmers with a portable application development environment which may
include an editor, compiler, debugger, profiler, manual and other tools along with
high-performance compile-time and run-time libraries for a particular platform or
a restricted class of computer architectures.

The purpose of the SVMT class library standard is to support portable appli-
cation programs. Most SVMT class library implementations for general purpose
computing platforms are expected to provide all of the functionality specified by
the standard. However, implementations intended for application development
on special purpose computing platforms such as embedded processors may im-
pose additional restrictions on application programs. For example, an SVMT class
library for an embedded processor might restrict application programs to floating-
point type float and provide no support for floating-point types double or long
double. An application programmer can still export all application programs de-
veloped on the special purpose computer but some additional programming may
be required to import application programs developed on other computers.

The C++ SVMT class library standard supports the first four tensor orders:
0. scalar, 1. vector, 2. matrix and 3. tensor. Some non-standard implementations
may support higher order tensors. Both real and complex tensors are stored in
contiguous one dimensional arrays of real numbers. The actual representation of
these arrays might be hidden from the application programmer and it may not be
possible to reference them through a pointer because, for example, the array may
be distributed across several nodes in a multi-processor system. Complex numbers
are stored as pairs of real numbers with the imaginary part following immediately
after the real part. The real and imaginary parts of a complex tensor correspond
to the even and odd elements of the real one dimensional array respectively. A
scalar is a single real or complex element of a vector with n columns, a matrix with
m rows and n columns or a tensor with l pages, m rows and n columns. Matrices
are stored in row major order and tensors are stored in page major order.

SVMT classes are designed to detect most common programming errors at
compile-time but some programming errors cannot be detected until run-time.
The SVMT class library standard does not require any run-time error detection.
Application programmers are responsible for all run-time error detection and han-
dling. An SVMT class library developer may provide the application programmer
with tools to help detect and debug programming errors at run-time but it prob-
ably won’t help much to detect them after the application is placed into service.

1

The C++ SVMT class names <Type><System><Name> have three fields. The
third field <Name> designates one of five base classes or one of the seven derived
classes from the following table:

order base derived
Handle

0 SubScalar SubArray0

1 SubVector SubArray1 Vector

2 SubMatrix SubArray2 Matrix

3 SubTensor SubArray3 Tensor

The second field <System> is replaced by Complex for complex numbers or by the
empty string for real numbers.

real complex
<type> <Type>Complex

<Type><Name> <Type>Complex<Name>

The first field <Type> is a string from the following table:

<type> <Type>

C
o
m
p
l
e
x

H
a
n
d
l
e

S
u
b
S
c
a
l
a
r

S
u
b
V
e
c
t
o
r

S
u
b
M
a
t
r
i
x

S
u
b
T
e
n
s
o
r

Offset offset * * *

bool bool * * * * *

signed char signed char * * * * *

unsigned char unsigned char * * * * *

signed short int signed short int * * * * *

unsigned short int unsigned short int * * * * *

signed int signed int * * * * *

unsigned int unsigned int * * * * *

signed long int signed long int * * * * *

unsigned long int unsigned long int * * * * *

float float * * * * * *

double double * * * * * *

long double long double * * * * * *

which corresponds to one of the built-in types <type>. An asterisk * indicates
which types are supported by each class. An SVMT class library implementation
defines three synonyms for integral types:

unsigned int Offset

unsigned int Extent

signed int Stride

2

An Offset or Extent may be an unsigned integral type but a Stride must be a
signed integral type.

The SVMT class library standard specifies class <Type>Complex for each of
the corresponding built-in floating-point types. The real and imaginary parts are
represented by an array of two real numbers and the application programmer can
always obtain a pointer to this array. If z is a complex number, then &z.real()

is a pointer to the real part and &z.real()+1 is a pointer to the imaginary part.
Handle objects contain a reference to a one dimensional array of type <type>.

Handles are normally created and initialized by other SVMT classes but the
application programmer can create a copy <Type><System>Handle g = h of an
existing handle h. The application programmer can retrieve the element at offset
j from the beginning of the array using member function get(j) or assign the
value x to the element at offset j from the beginning of the array using member
function put(j, x).

SubScalar, SubVector, SubMatrix and SubTensor objects contain a handle,
an offset from the beginning of the one dimensional array referenced by the handle
to the first element of the subtensor and an extent and stride for each dimension.
These data members are private and may be retrieved (but not modified) by the
application programmer through the following member functions:

class return type
SubScalar SubVector SubMatrix SubTensor const

handle() handle() handle() handle() Handle&

offset() offset() offset() offset() Offset

extent() extent1() extent1() Extent

stride() stride1() stride1() Stride

extent2() extent2() Extent

stride2() stride2() Stride

extent3() Extent

stride3() Stride

These simple attributes permit application programmers to reference slices which
are a restricted but important set of subtensors within any tensor.

The SubArray0, SubArray1, SubArray2 and SubArray3 classes are derived
from SubScalar, SubVector, SubMatrix and SubTensor classes respectively in
order to permit the application programmer to reference an ordinary one dimen-
sional array with a subtensor. The SubArray0 class exists so that a SubArray1

subscript operator can return a SubArray0 and appear on the left hand side of
an assignment operation. The SubScalar class exists so that a SubVector sub-
script operator can return a SubScalar and appear on the left hand side of an
assignment operation. The Vector, Matrix and Tensor classes are derived from
SubVector, SubMatrix and SubTensor classes respectively but have constructors
which automatically allocate a one dimensional array for the tensor object from
free storage when it is created and destructors which automatically deallocate the

3

one dimensional array when it is destroyed. Most functions and operations are
defined on SubVector, SubMatrix and SubTensor classes and inherited by the
corresponding derived classes.

2 Class Libraries

2.1 Complex classes

The SVMT Complex class libraries are based upon math libraries for built-in
floating-point types float, double and long double which include support for
inverse trigonometric and hyperbolic functions.

2.1.1 Constructors

Default Constructors

<Type>Complex c

create an uninitialized complex number c.

Explicit Constructors

<Type>Complex c = r and
<Type>Complex c(r, i)

create a complex number c and copy the real and imaginary parts from real values
r and i respectively. If i is omitted, the imaginary part of c is set to zero.

Copy Constructors

<Type>Complex z = c

create a new complex number z and copy the respective real and imaginary parts
from complex number c.

2.1.2 Functions

There are only twenty three complex functions:

z.real() <(z) z.imag() =(z)
conj(z) z∗ iconj(z) iz∗

norm(z) |z|2 sqrt(z)
√
z

exp(z) ez log(z) ln(z)
abs(z) |z| arg(z) arg(z) polar(r, t) reit

cos(z) cos(z) sin(z) sin(z) tan(z) tan(z)
acos(z) cos−1(z) asin(z) sin−1(z) atan(z) tan−1(z)
cosh(z) cosh(z) sinh(z) sinh(z) tanh(z) tanh(z)
acosh(z) cosh−1(z) asinh(z) sinh−1(z) atanh(z) tanh−1(z)

4

Member functions z.real() and z.imag() return a reference to the real and
imaginary parts of z respectively so they may appear on the left hand side of
an assignment operation. Functions abs(z), arg(z) and norm(z) return a real
number of type <type>. All of the other functions return a complex number
of type <Type>Complex. Because there is no imaginary number class, function
iconj(z) is included to help compensate.

2.1.3 Operators

Unary operators

minus plus
unary -z −z +z +z

return type <Type>Complex.

Binary operators

real–complex complex–complex complex–real
multiply r*z r · z z*c z · c z*r z · r

divide r/z r/z z/c z/c z/r z/r
add r + z r + z z + c z + c z + r z + r

subtract r - z r − z z - c z − c z - r z − r

return type <Type>Complex.

Output operator

return type function functionality
ostream& cout << z cout << ’(’ << z.real() << ’,’

<< ’ ’ << z.imag() << ’)’

Input operator

return type function functionality
istream& cin >> z cin >> ’(’ >> z.real() >> ’,’

>> z.imag() >> ’)’

Comparison operators

real–complex complex–complex complex–real
equal r == z r = z z == c z = c z == r z = r

not equal r != z r 6= z z != c z 6= c z != r z 6= r

return type bool.

5

Assignment operators

complex–complex complex–real
simple z = c z ← c z = r z ← r

multiply z *= c z ← z · c z *= r z ← z · r
divide z /= c z ← z/c z /= r z ← z/r

add z += c z ← z + c z += r z ← z + r
subtract z -= c z ← z − c z -= r z ← z − r

return a reference of type <Type>Complex& to the left hand side.

2.2 Handle classes

A handle might be represented by a pointer to an ordinary one dimensional array
of real numbers but more generally it will be a reference to some implementation
dependent data structure which is hidden from the application programmer.

2.2.1 Constructors

Private Constructors

<Type><System>Handle h(p)

where p is a pointer to an ordinary one dimensional array of type <type>, are
used by the SVMT class library developer to create a handle.

Public Copy Constructors

<Type><System>Handle g(h)

make a copy of the handle but not the underlying one dimensional array of real
numbers.

2.2.2 Functions

Member function h.empty() returns true if the handle contains a null reference
to the one dimensional array. Member function h.get(j) returns element j.
Member function h.put(j, x) assigns the value of scalar x to element j. If h
is complex and x is real, then the imaginary part of the element at offset j is
set to zero. Element j is located at an offset of j from the beginning of the one
dimensional array if h is real or at an offset of 2j from the beginning of the one
dimensional array if h is complex.

6

2.2.3 Operators

The cast (type conversion) operator (<type>*)h returns 0 unless the handle h

contains a pointer to an ordinary one dimensional array of real numbers. If h

is complex, then the cast (type conversion) operator (<Type>Handle)h returns a
real handle on the same one dimensional array referenced through handle h.

2.3 SubScalar, SubVector, SubMatrix and SubTensor classes

SubScalar, SubVector, SubMatrix and SubTensor objects contain a handle and an
offset from the first element of the real one dimensional array referenced though
the handle to the first element of the SubScalar, SubVector, SubMatrix or Sub-
Tensor. SubVector, SubMatrix and SubTensor objects also contain the number
of elements and the stride between elements for each dimension. These simple at-
tributes permit application programmers to access a restricted but very important
set of subtensors without sacrificing performance.

2.3.1 Constructors

Explicit Constructors

<Type><System>SubScalar s(h, o),
<Type><System>SubVector v(h, o, n1, s1),
<Type><System>SubMatrix M(h, o, n2, s2, n1, s1) and
<Type><System>SubTensor T(h, o, n3, s3, n2, s2, n1, s1)

where h is a handle of type <Type><System>Handle, o is an offset of type Offset,
n1, n2 and n3 are extents of type Extent and s1, s2 and s3 are strides of type
Stride. SVMT class libraries do not normally check whether the one dimensional
array referenced through h actually contains the subtensor or not.

Copy Constructors

<Type><System>SubScalar t(s),
<Type><System>SubVector w(v),
<Type><System>SubMatrix N(M) and
<Type><System>SubTensor U(T)

simply copy the attributes of an existing subtensor not the underlying one dimen-
sional array.

Default Constructors

<Type><System>SubVector v,
<Type><System>SubMatrix M and
<Type><System>SubTensor T

create an empty subvector, submatrix and subtensor respectively.

7

2.3.2 Functions

Static data members: All SubVector classes include static member functions

return type function
Extent& <Type><System>SubVector::columns()

which reference the number of columns displayed on each line using operator <<.
The I/O stream manipulator function setw(w, n) has been overloaded to accept
a second integer argument n which specifies the number of columns displayed on
each line for the following SubVector, SubMatrix or SubTensor object and should
be used instead of static member function columns().

Data members: All SubScalar, SubVector, SubMatrix and SubTensor classes
include member functions

class return type
SubScalar SubVector SubMatrix SubTensor const

s.handle() v.handle() M.handle() T.handle() Handle&

s.offset() v.offset() M.offset() T.offset() Offset

v.extent() M.extent1() T.extent1() Extent

v.stride() M.stride1() T.stride1() Stride

M.extent2() T.extent2() Extent

M.stride2() T.stride2() Stride

T.extent3() Extent

T.stride3() Stride

which return a constant reference to the handle, the offset from the first element
of the one dimensional array to the first element of the subtensor and the extent
and stride for each dimension.

Empty: All SubScalar, SubVector, SubMatrix and SubTensor classes include
constant member functions

return
type function functionality
bool s.empty() s.handle().empty(),
bool v.empty() v.handle().empty() ∨ n1 = 0,
bool M.empty() M.handle().empty() ∨ n1 = 0 ∨ n2 = 0 and
bool T.empty() T.handle().empty() ∨ n1 = 0 ∨ n2 = 0 ∨ n3 = 0

respectively which return true if the subtensor references a null one dimensional
array or if any of the extents are zero.

8

Allocate: All SubVector, SubMatrix and SubTensor classes include static mem-
ber functions

return type allocate memory
<Type><System>Handle allocate(n),
<Type><System>Handle allocate(m, n) and
<Type><System>Handle allocate(l, m, n)

respectively which allocate memory for a one dimensional array of length n, m*n
and l*m*n respectively. Application programmers should avoid these functions if
possible.

Free: All SubVector, SubMatrix and SubTensor classes include member func-
tions

return type free memory
<Type><System>SubVector& v.free(),
<Type><System>SubMatrix& M.free() and
<Type><System>SubTensor& T.free()

respectively which de-allocate the memory allocated by allocate(n), allocate(m,
n) and allocate(l, m, n) respectively. Application programmers should avoid
these functions if possible.

Resize: All SubVector, SubMatrix and SubTensor classes include member func-
tions

return type explicit resize
<Type><System>SubVector& v.resize(h, o, n1, s1),
<Type><System>SubMatrix& M.resize(h, o, n2, s2, n1, s1) and
<Type><System>SubTensor& T.resize(h, o, n3, s3, n2, s2, n1, s1)

respectively which correspond to the respective explicit constructors. Application
programmers should avoid these functions if possible.

All SubVector, SubMatrix and SubTensor classes include member functions

return type copy resize
<Type><System>SubVector& w.resize(v),
<Type><System>SubMatrix& N.resize(M) and
<Type><System>SubTensor& U.resize(T)

respectively which correspond to the respective copy constructors. Application
programmers should avoid these functions if possible.

All SubVector, SubMatrix and SubTensor classes include member functions

9

return type default resize
<Type><System>SubVector& v.resize(),
<Type><System>SubMatrix& M.resize() and
<Type><System>SubTensor& T.resize()

respectively which correspond to the respective default constructors. Application
programmers should avoid these functions if possible.

Subtensors of subtensors: All SubVector classes except offsetSubVector

and all SubMatrix and SubTensor classes include member functions

return type subsubtensor
<Type><System>SubVector v.sub(j, n1, s1),
<Type><System>SubMatrix M.sub(i, n2, s2),
<Type><System>SubTensor T.sub(h, n3, s3),
<Type><System>SubMatrix M.sub(i, n2, s2, j, n1, s1),
<Type><System>SubTensor T.sub(h, n3, s3, i, n2, s2) and
<Type><System>SubTensor T.sub(h, n3, s3, i, n2, s2, j, n1, s1)

respectively which return a subtensor to reference a subtensor of a subtensor com-
puting the attributes as shown in the following tables:

v.sub(j, n1, s1)

handle() = v.handle()

offset() = v.offset()+j*v.stride()

extent() = n1

stride() = s1*v.stride()

M.sub(i, n2, s2)

handle() = M.handle()

offset() = M.offset()+i*M.stride2()

extent1() = M.extent1()

stride1() = M.stride1()

extent2() = n2

stride2() = s2*M.stride2()

T.sub(h, n3, s3)

handle() = T.handle()

offset() = T.offset()+h*T.stride3()

extent1() = T.extent1()

stride1() = T.stride1()

extent2() = T.extent2()

stride2() = T.stride2()

extent3() = n3

stride3() = s3*T.stride3()

10

M.sub(i, n2, s2, j, n1, s1)

handle() = M.handle()

offset() = M.offset()+i*M.stride2()+j*M.stride1()

extent1() = n1

stride1() = s1*M.stride1()

extent2() = n2

stride2() = s2*M.stride2()

T.sub(h, n3, s3, i, n2, s2)

handle() = T.handle()

offset() = T.offset()+h*T.stride3()+i*T.stride2()

extent1() = T.extent1()

stride1() = T.stride1()

extent2() = n2

stride2() = s2*T.stride2()

extent3() = n3

stride3() = s3*T.stride3()

T.sub(h, n3, s3, i, n2, s2, j, n1, s1)

handle() = T.handle()

offset() = T.offset()+h*T.stride3()+i*T.stride2()+j*T.stride1()

extent1() = n1

stride1() = s1*T.stride1()

extent2() = n2

stride2() = s2*T.stride2()

extent3() = n3

stride3() = s3*T.stride3()
where h, i and j are of type Offset, n1, n2 and n3 are of type Extent and s1,
s2 and s3 are of type Stride. These functions do not normally check whether
the subtensor actually contains the subsubtensor or not.

Containment: All SubVector classes except offsetSubVector and all SubMatrix
and SubTensor classes include constant member functions

bool v.contains(j, n1, s1),
bool M.contains(i, n2, s2),
bool T.contains(h, n3, s3),
bool M.contains(i, n2, s2, j, n1, s1),
bool T.contains(h, n3, s3, i, n2, s2) and
bool T.contains(h, n3, s3, i, n2, s2, j, n1, s1)

which return true if

11

v contains v.sub(j, n1, s1),
M contains M.sub(i, n2, s2),
T contains T.sub(h, n3, s3),
M contains M.sub(i, n2, s2, j, n1, s1),
T contains T.sub(h, n3, s3, i, n2, s2) and
T contains T.sub(h, n3, s3, i, n2, s2, j, n1, s1)

respectively which means that

0 ≤ j < extent() ∧ 0 ≤ j +(n1−1)s1< extent(),
0 ≤ j < extent1() ∧ 0 ≤ j +(n1−1)s1< extent1(),
0 ≤ i < extent2() ∧ 0 ≤ i +(n2−1)s2< extent2() and
0 ≤ h< extent3() ∧ 0 ≤ h+(n3−1)s3< extent3().

Order promotion: All SubScalar classes except offsetSubScalar include
constant member functions

return type function
const <Type><System>SubVector s.subvector(n),
const <Type><System>SubMatrix s.submatrix(n, m) and
const <Type><System>SubTensor s.subtensor(n, m, l)

which return subvectors with n columns, submatrices with n columns and m rows
or subtensors with n columns, m rows and l pages but stride3() = stride2() =
stride1() = stride() = 0 so that every element references the same subscalar.
Arguments n, m and l are of type Extent and default to a value of +1 if omitted.

All SubVector classes except offsetSubVector include constant member func-
tions

return type function
const <Type><System>SubMatrix v.submatrix(m) and
const <Type><System>SubTensor v.subtensor(m, l)

which return submatrices with m rows or subtensors with m rows and l pages but
stride3() = stride2() = 0 so that every row references the same subvector.
Arguments m and l are of type Extent and default to a value of +1 if omitted.

All SubMatrix classes include constant member functions

return type function
const <Type><System>SubTensor M.subtensor(l)

which return subtensors with l pages but stride3() = 0 so that every page
references the same submatrix. Argument l is of type Extent and defaults to a
value of +1 if omitted.

12

Transpose: All SubMatrix classes include member functions

result return type function
page matrices <Type><System>SubMatrix M.t()

which return a submatrix to reference the transpose of the original submatrix.
All SubTensor classes include member functions

result return type function
page matrices <Type><System>SubTensor T.t12(),

column matrices <Type><System>SubTensor T.t23() and
row matrices <Type><System>SubTensor T.t31()

which return a subtensor to reference the transpose of page, column and row
matrices of the original subtensor respectively.

Diagonal: All SubMatrix classes include member functions

result return type function
page matrices <Type><System>SubVector M.diag()

which return a subvector to reference the diagonal of the original submatrix.
All SubTensor classes include member functions

result return type function
page matrices <Type><System>SubMatrix T.diag12(),

column matrices <Type><System>SubMatrix T.diag23() and
row matrices <Type><System>SubMatrix T.diag31()

which return a submatrix to reference the diagonals of page, column and row
matrices of the original subtensor respectively.

Reverse: All SubVector classes except offsetSubVector include member func-
tions

return type function o s1

<Type><System>SubVector v.r() o+ s1(n1 − 1) −s1

which return a subvector to reference the columns of the original subvector in
reverse order.

Member function v.reverse() actually reverses the elements in place and
returns a reference to the original subvector.

All SubMatrix classes include member functions

return type function o s1 s2

<Type><System>SubMatrix M.r1() o+ s1(n1 − 1) −s1 +s2

<Type><System>SubMatrix M.r2() o+ s2(n2 − 1) +s1 −s2

<Type><System>SubMatrix M.r() o+ s1(n1 − 1) −s1 −s2

+ s2(n2 − 1)

13

which return a submatrix to reference the columns or rows or both the columns
and rows of the original submatrix in reverse order.

Member functions M.reverse1(), M.reverse2() and M.reverse() actually
reverse the elements in place and return a reference to the original submatrix.

All SubTensor classes include member functions

return type function o s1 s2 s3

<Type><System>SubTensor T.r1() o+ s1(n1 − 1) −s1 +s2 +s3

<Type><System>SubTensor T.r2() o+ s2(n2 − 1) +s1 −s2 +s3

<Type><System>SubTensor T.r3() o+ s3(n3 − 1) +s1 +s2 −s3

<Type><System>SubTensor T.r() o+ s1(n1 − 1) −s1 −s2 −s3

+ s2(n2 − 1)
+ s3(n3 − 1)

which return a subtensor to reference the columns, rows or pages or the columns,
rows and pages of the original subtensor in reverse order.

Member functions T.reverse1(), T.reverse2(), T.reverse3() and T.reverse()

actually reverse the elements in place and return a reference to the original sub-
tensor.

Even and odd columns: All SubVector classes except offsetSubVector and
all SubMatrix and SubTensor classes include member functions

return type even odd
<Type><System>SubVector v.even() v.odd(),
<Type><System>SubMatrix M.even() M.odd() and
<Type><System>SubTensor T.even() T.odd()

respectively which return a subtensor to reference the even or odd elements in
each row of the original subtensor.

Real and imaginary parts: All complex floating-point SubVector, SubMatrix
and SubTensor classes include member functions

return type real imaginary
<Type>SubVector v.real() v.imag(),
<Type>SubMatrix M.real() M.imag() and
<Type>SubTensor T.real() T.imag()

respectively which return a real subtensor to reference the real or imaginary part.

Discrete Fourier transform: All complex floating-point SubVector, SubMatrix
and SubTensor classes include member functions

14

return type complex to complex
<Type>ComplexSubVector& v.dft(sign),
<Type>ComplexSubMatrix& M.dft(sign) and
<Type>ComplexSubTensor& T.dft(sign)

respectively which perform a complex to complex Discrete Fourier Transform of
the row vectors in-place and return a reference to the transformed subtensor.
Argument sign is of type signed int, defaults to a value of −1 if omitted and
determines whether

vk ←
{ ∑n−1

j=0 vje
−i2πjk/n if sign < 0∑n−1

j=0 vje
+i2πjk/n if 0 ≤ sign

(1)

is a direct or inverse Discrete Fourier Transform of row vector v.
All real floating-point SubVector, SubMatrix and SubTensor classes include

member functions

return type complex to real real to complex
<Type>SubVector& v.rdft(sign) v.cdft(sign),
<Type>SubMatrix& M.rdft(sign) M.cdft(sign) and
<Type>SubTensor& T.rdft(sign) T.cdft(sign)

respectively which perform a complex to real or real to complex Discrete Fourier
Transform of the row vectors in-place and return a reference to the transformed
subtensor. The first half of complex row vector v is packed into real row vector v
with =(v0) = <(vn/2) if the extent n is even or =(v0) = =(v(n−1)/2) if the extent
n is odd.

All real and complex SubVector classes include a member function

return type function functionality
<Type>SubVector& u.pack(v) complex into real and

<Type>ComplexSubVector& v.pack(u) real into complex

respectively which pack a complex vector v into a real vector u and pack a real
vector u into a complex vector v respectively so that u2j = <{vj}∀j|0 ≤ 2j < n
and u2j+1 = ={vj}∀j|1 ≤ 2j+1 < n where n is the length of real vector u which
must be no more than twice the length of complex vector v.

Ramp: All real SubVector classes except boolSubVector and all SubMatrix
and SubTensor classes include member functions

return type function functionality
<Type>SubVector& v.ramp() vj ← j,
<Type>SubMatrix& M.ramp() Mi,j ← j and
<Type>SubMatrix& T.ramp() Th,i,j ← j

respectively which initialize each element to the corresponding column index then
return a reference to the subtensor.

15

Swap: All SubVector, SubMatrix and SubTensor classes include member func-
tions

return type function functionality
<Type><System>SubVector& v.swap(j, k) vj ←→ vk,
<Type><System>SubMatrix& M.swap(i, k) Mi,j ←→Mk,j and
<Type><System>SubTensor& T.swap(h, k) Th,i,j ←→ Tk,i,j

respectively which swap column j with column k, row i with row k and page h
with page k respectively then return a reference to the subvector, submatrix and
subtensor respectively.

All SubVector classes except offsetSubVector and all SubMatrix and SubTensor

classes include member functions

return type function functionality
<Type><System>SubVector& v.swap(w) vj ←→ wj,
<Type><System>SubMatrix& M.swap(N) Mi,j ←→ Ni,j and
<Type><System>SubTensor& T.swap(U) Th,i,j ←→ Uh,i,j

respectively which swap the elements of two subtensors then return a reference
to the first subtensor. Both operands must be the same size.

Rotate and shift: All SubVector, SubMatrix and SubTensor classes except
offsetSubVector include member functions

return type function functionality
<Type><System>SubVector& v.rotate(n) v(j+n) mod v.extent(),
<Type><System>SubMatrix& M.rotate(n) Mi,(j+n) mod M.extent1() and
<Type><System>SubTensor& T.rotate(n) Th,i,(j+n) mod T.extent1()

respectively which execute an in-place circular shift on all row vectors then return
a reference to the rotated subtensor.

All SubVector, SubMatrix and SubTensor classes except offsetSubVector

include member functions

return type function functionality

<Type><System>SubVector& v.shift(n, s)
vj+n
s

0≤j+n<v.extent()

otherwise,

<Type><System>SubMatrix& M.shift(n, s)
Mi,j+n

s
0≤j+n<M.extent1()

otherwise and

<Type><System>SubTensor& T.shift(n, s)
Th,i,j+n
s

0≤j+n<T.extent1()

otherwise

respectively which execute an in-place shift on all row vectors then return a ref-
erence to the shifted subtensor. Scalar argument s defaults to a value of 0 if
omitted.

16

Minimum and maximum: All real SubVector classes except boolSubVector
include constant member functions

return type minimum maximum
Offset v.min() v.max()

which return an index to the minimum or maximum element and functions

return type minimum maximum
<type> min(v) max(v)

which return the minimum or maximum element itself.
All real SubMatrix and SubTensor class libraries include functions

return type minimum maximum
const <Type>Vector min(M) max(M) and
const <Type>Matrix min(T) max(T)

respectively which return the minimum or maximum element in each row. In
order to find the minimum of all of the elements in a submatrix, the application
programmer writes min(min(M)) and min(min(min(T))) in order to find the
minimum of all of the elements in a subtensor. In order to find the maximum of all
of the elements in a submatrix, the application programmer writes max(max(M))
and max(max(max(T))) in order to find the maximum of all of the elements in a
subtensor.

All real SubVector, SubMatrix and SubTensor class libraries except
offsetSubVector and boolSubVector include functions

return type minimum maximum
const <Type>Vector min(v, w) max(v, w),
const <Type>Matrix min(M, N) max(M, N) and
const <Type>Tensor min(T, U) max(T, U)

respectively which compare corresponding elements of a pair of subvectors, sub-
matrices or subtensors and return the minimum or maximum. Both arguments
must be the same size.

Row vector sum: All SubVector classes except offsetSubVector and
boolSubVector include constant member functions

return type
result real complex function functionality
scalar <type> <Type>Complex v.sum()

∑n−1
j=0 vj n=v.extent().

All SubMatrix and SubTensor classes except boolSubMatrix and boolSubTensor

include constant member functions

17

return type function functionality
const <Type><System>Vector M.sum()

∑n−1
j=0 Mi,j n=M.extent1() and

const <Type><System>Matrix T.sum()
∑n−1
j=0 Th,i,j n=T.extent1()

respectively. In order to sum all of the elements in a submatrix, the application
programmer writes M.sum().sum() and T.sum().sum().sum() in order to sum
all of the elements in a subtensor.

[Transpose] dot product: All SubVector classes except offsetSubVector

and boolSubVector include constant member functions

return type
result real complex functionality
scalar <type> <Type>Complex v.dot(w) = vwT .

All SubVector classes except offsetSubVector and boolSubVector include
constant member functions

result return type functionality
row vector const <Type><System>Vector v.dot(M) = vMT .

All SubMatrix classes except offsetSubMatrix and boolSubMatrix include
constant member functions

result return type functionality
column vector const <Type><System>Matrix M.dot(v) = MvT and

matrix const <Type><System>Matrix M.dot(N) = MNT .

All SubVector classes except boolSubVector and offsetSubVector include
constant member functions

return type
result real complex functionality
scalar <type> <Type>Complex v.dot() = vvT .

All SubMatrix classes except boolSubMatrix include constant member func-
tions

result return type functionality
square matrix const <Type><System>Square M.dot() = MMT .

All SubMatrix classes include member functions

function functionality
M.pack(s) Mi,j ← s ∀j ≤ i and
M.pack(N) Mi,j ← Ni,j ∀j ≤ i

which pack the diagonal and subdiagonal elements of submatrix M with scalar
s and the corresponding elements of submatrix N respectively then return a
reference to submatrix M . The scalar s = 0 if omitted and the function is
undefined unless submatrix M and submatrix N are exactly the same size.

18

Matrix decomposition: All real and complex floating-point SubMatrix classes
include member functions

return type function solves

const <Type><System>Matrix M.svd()
M = UDV T if m ≥ n
MT = UDV T if m < n

which decompose an m×n matrix M into orthonormal matrices U and V and a
diagonal matrix D where di = Di,i are the singular values, replace M with U if

m ≥ n or UT if m < n then return

[
d
V

]
.

All real and complex floating-point SubMatrix classes include member func-
tions

return type function solves function solves
offsetVector M.lud() PM = L(DU) M.qrd() PM = QR

which decompose matrix M in-place and return the permutation vector required
to obtain the permutation PM of the rows of matrix M . Matrices L and Q
are packed into the subdiagonal elements and matrices DU and R are packed
in the remaining elements of matrix M . Orthogonal matrix Q is actually the
product of Householder reflections and only the essential part of each normalized
Householder vector is packed into the columns below the diagonal.

Triangular system solvers: All real and complex floating-point SubVector

and SubMatrix classes include constant member functions

const

<Type><System> function solves function solves
Vector v.pl(p, L) v = w(P TL)T v.l(L) v = wLT and
Matrix M.pl(p, L) M = N(P TL)T M.l(L) M = NLT

respectively. The P TL and L system solvers ignore the elements of L along and
above the diagonal. They assume that all of the elements along the diagonal are
ones and all of the elements above the diagonal are zero.

All real and complex floating-point SubVector and SubMatrix classes include
constant member functions

const

<Type><System> function solves function solves
Vector v.u(U) v = wUT v.up(U, p) v = w(UP)T and
Matrix M.u(U) M = NUT M.up(U, p) M = N(UP)T

respectively. The U and UP system solvers ignore the elements of U along and
below the diagonal. They assume that all of the elements along the diagonal are
ones and all of the elements below the diagonal are zero.

All real and complex floating-point SubVector and SubMatrix classes include
constant member functions

19

const

<Type><System> function solves function solves
Vector v.pld(p, LD) v = w(P TLD)T v.ld(LD) v = w(LD)T and
Matrix M.pld(p, LD) M = N(P TLD)T M.ld(LD) M = N(LD)T

respectively. The P TLD and LD system solvers ignore all the elements of LD
above the diagonal and assume that they are zero.

All real and complex floating-point SubVector and SubMatrix classes include
constant member functions

const

<Type><System> function solves function solves
Vector v.du(DU) v = w(DU)T v.dup(DU, p) v = w(DUP)T and
Matrix M.du(DU) M = N(DU)T M.dup(DU, p) M = N(DUP)T

respectively. The DU and DUP system solvers ignore all the elements of DU
below the diagonal and assume that they are zero.

Triangular systems withm rows and n columns are under-determined ifm < n,
square if m = n or over-determined if m > n. Only the first m permuted columns
of the solution to an under-determined system are non-zero. The solution to an
over-determined system depends only upon the first n permuted rows.

Orthogonal system solvers: All real and complex floating-point SubVector

and SubMatrix classes include constant member functions

const

<Type><System> function solves function solves
Vector v.pq(p, L) v = w(P TQ)T v.q(L) v = wQT and
Matrix M.pq(p, L) M = N(P TQ)T M.q(L) M = NQT

respectively. The P TQ and Q orthogonal system solvers ignore the elements of
L along and above the diagonal. They assume that all of the elements along the
diagonal are ones and the essential part of each normalized Householder vector is
stored in the columns of L below the diagonal.

Comparisons: All real SubVector, SubMatrix and SubTensor classes except
boolSubVector, boolSubMatrix, boolSubTensor and offsetSubVector include
constant member functions

const boolVector const boolMatrix const boolTensor

v.lt(s) vj < s M.lt(s) Mi,j < s T.lt(s) Th,i,j < s,
v.le(s) vj ≤ s M.le(s) Mi,j ≤ s T.le(s) Th,i,j ≤ s,
v.gt(s) vj > s M.gt(s) Mi,j > s T.gt(s) Th,i,j > s and
v.ge(s) vj ≥ s M.ge(s) Mi,j ≥ s T.ge(s) Th,i,j ≥ s

20

where s is a scalar and

const boolVector const boolMatrix const boolTensor

v.lt(w) vj < wj M.lt(N) Mi,j < Ni,j T.lt(U) Th,i,j < Uh,i,j,
v.le(w) vj ≤ wj M.le(N) Mi,j ≤ Ni,j T.le(U) Th,i,j ≤ Uh,i,j,
v.gt(w) vj > wj M.gt(N) Mi,j > Ni,j T.gt(U) Th,i,j > Uh,i,j and
v.ge(w) vj ≥ wj M.ge(N) Mi,j ≥ Ni,j T.ge(U) Th,i,j ≥ Uh,i,j

where both operands are the same size.
All SubVector, SubMatrix and SubTensor classes except offsetSubVector

include constant member functions

const boolVector const boolMatrix const boolTensor

v.eq(s) vj = s M.eq(s) Mi,j = s T.eq(s) Th,i,j = s and
v.ne(s) vj 6= s M.ne(s) Mi,j 6= s T.ne(s) Th,i,j 6= s

where s is a scalar and

const boolVector const boolMatrix const boolTensor

v.eq(w) vj = wj M.eq(N) Mi,j = Ni,j T.eq(U) Th,i,j = Uh,i,j and
v.ne(w) vj 6= wj M.ne(N) Mi,j 6= Ni,j T.ne(U) Th,i,j 6= Uh,i,j

where both operands are the same size.
All boolSubVector, boolSubMatrix and boolSubTensor classes include func-

tions

return type OR AND
bool any(v) ¬(v = false) all(v) v = true,
boolVector any(M) ¬(Mi = false) all(M) Mi = true and
boolMatrix any(T) ¬(Th,i = false) all(T) Th,i = true

respectively.

Sparse subtensors: All SubVector, SubMatrix and SubTensor classes except
offsetSubVector include constant member functions

return type function return type function
Extent v.zeros() const offsetVector v.index(),
Extent M.zeros() const offsetVector M.index() and
Extent T.zeros() const offsetVector T.index()

respectively which count the number of zero elements and find the non-zero ele-
ments in a subtensor. Function index searches the pages, rows and columns of a
subtensor in order for the next non-zero element tk and computes the index xk

tk xk
vj j

Mi,j j + i*M.extent1()

Th,i,j j + i*T.extent1() + h*T.extent2()*T.extent1()

21

then returns the indices as a const offsetVector x.
All SubVector, SubMatrix and SubTensor classes except offsetSubVector

include constant member functions

return type function
const <Type><System>Vector v.gather(x),
const <Type><System>Vector M.gather(x) and
const <Type><System>Vector T.gather(x)

respectively and member functions

return type function
<Type><System>SubVector& v.scatter(x, t),
<Type><System>SubMatrix& M.scatter(x, t) and
<Type><System>SubTensor& T.scatter(x, t)

respectively where vector arguments x and t are the same size. Function gather
retrieves the elements tk = vj, tk = Mi,j or tk = Th,i,j corresponding to index xk
then returns the const <Type><System>Vector t. Function scatter assigns the
element vj = tk, Mi,j = tk or Th,i,j = tk corresponding to index xk then returns a
reference to the subtensor.

Join two subtensors: All SubVector classes except offsetSubVector and all
SubMatrix and SubTensor classes include constant member functions

const

<Type><System> functionality conformance conditions
Vector v.aside(w) = [v|w]
Matrix M.aside(N) = [M |N] M.extent2() == N.extent2()

Tensor T.aside(U) = [T |U]
T.extent2() == U.extent2()

T.extent3() == U.extent3()

which return a new tensor created by adjoining two subtensors.
All SubVector, SubMatrix and SubTensor classes except offsetSubVector

include constant member functions

const

<Type><System> functionality conformance conditions

Matrix v.above(w) =

[
v
w

]
v.extent() == w.extent()

Matrix v.above(M) =

[
v
M

]
M.extent1() == v.extent()

Matrix M.above(N) =

[
M
N

]
M.extent1() == N.extent1()

Matrix M.above(v) =

[
M
v

]
M.extent1() == v.extent()

Tensor T.above(U) =

[
T
U

]
T.extent3() == U.extent3()

T.extent1() == U.extent1()

22

which return a new tensor created by stacking two subtensors.
All SubMatrix and SubTensor classes include constant member functions

const

<Type><System> functionality conformance conditions

Tensor M.afore(N) = [M] N]
M.extent1() == N.extent1()

M.extent2() == N.extent2()

Tensor M.afore(U) = [M] U]
M.extent1() == U.extent1()

M.extent2() == U.extent2()

Tensor T.afore(U) = [T] U]
T.extent1() == U.extent1()

T.extent2() == U.extent2()

Tensor T.afore(M) = [T] M]
T.extent1() == M.extent1()

T.extent2() == M.extent2()

which return a new tensor created by appending one subtensor to another.

Kronecker product: All SubVector classes except offsetSubVector and
boolSubVector include constant member functions

return type function functionality
const <Type><System>Vector v.kron(w) v ⊗ w,
const <Type><System>Matrix v.kron(M) v ⊗M and
const <Type><System>Tensor v.kron(T) v ⊗ T .

All SubMatrix classes except boolSubMatrix include constant member func-
tions

return type function functionality
const <Type><System>Matrix M.kron(v) M ⊗ v,
const <Type><System>Matrix M.kron(N) M ⊗N and
const <Type><System>Tensor M.kron(T) M ⊗ T .

All SubTensor classes except boolSubTensor include constant member func-
tions

return type function functionality
const <Type><System>Tensor T.kron(v) T ⊗ v,
const <Type><System>Tensor T.kron(M) T ⊗M and
const <Type><System>Tensor T.kron(U) T ⊗ U .

Apply univariate functions: All SubVector, SubMatrix and SubTensor classes
except offsetSubVector include constant member functions

return type function functionality
const <Type><System>Vector v.apply(f) f(vj),
const <Type><System>Matrix M.apply(f) f(Mi,j) and
const <Type><System>Tensor T.apply(f) f(Th,i,j)

23

respectively which apply univariate functions

real complex
<type> f(<type>) <Type>Complex f(<Type>Complex) or
<type> f(const <type>&) <Type>Complex f(const <Type>Complex&)

to the subtensor element by element.

Exponent, logarithm and square root: All real and complex floating-point
SubVector, SubMatrix and SubTensor classes include functions

return type exponent, logarithm and square root
const <Type><System>Vector exp(v) log(v) sqrt(v),
const <Type><System>Matrix exp(M) log(M) sqrt(M) and
const <Type><System>Tensor exp(T) log(T) sqrt(T)

respectively which are applied to the subtensor element by element.

Trigonometric and hyperbolic functions: All real and complex floating-
point SubVector, SubMatrix and SubTensor classes include

return type trigonometric functions
const <Type><System>Vector cos(v) sin(v) tan(v),
const <Type><System>Matrix cos(M) sin(M) tan(M) and
const <Type><System>Tensor cos(T) sin(T) tan(T)

respectively,

return type inverse trigonometric functions
const <Type><System>Vector acos(v) asin(v) atan(v),
const <Type><System>Matrix acos(M) asin(M) atan(M) and
const <Type><System>Tensor acos(T) asin(T) atan(T)

respectively,

return type hyperbolic functions
const <Type><System>Vector cosh(v) sinh(v) tanh(v),
const <Type><System>Matrix cosh(M) sinh(M) tanh(M) and
const <Type><System>Tensor cosh(T) sinh(T) tanh(T)

respectively and

return type inverse hyperbolic functions
const <Type><System>Vector acosh(v) asinh(v) atanh(v),
const <Type><System>Matrix acosh(M) asinh(M) atanh(M) and
const <Type><System>Tensor acosh(T) asinh(T) atanh(T)

respectively which are applied to the subtensor element by element.

24

Sign and magnitude: All signed integer and real floating-point SubVector,
SubMatrix and SubTensor classes include functions

return type sign magnitude
const <Type>Vector sgn(v) vj/|vj| abs(v) |vj|,
const <Type>Matrix sgn(M) Mi,j/|Mi,j| abs(M) |Mi,j| and
const <Type>Tensor sgn(T) Th,i,j/|Th,i,j| abs(T) |Th,i,j|

respectively which are applied to the subtensor element by element.

Floor and ceiling: All real floating-point SubVector, SubMatrix and SubTensor

classes include functions

return type floor ceiling
const <Type>Vector floor(v) bvjc ceil(v) dvje,
const <Type>Matrix floor(M) bMi,jc ceil(M) dMi,je and
const <Type>Tensor floor(T) bTh,i,jc ceil(T) dTh,i,je

respectively which are applied to the subtensor element by element.

Hypotenuse and arctangent: All real floating-point SubVector, SubMatrix
and SubTensor classes include functions

return type function functionality

const <Type>Vector hypot(v, w)
√
v2
j + w2

j ,

const <Type>Matrix hypot(M, N)
√
M2

i,j +N2
i,j and

const <Type>Tensor hypot(T, U)
√
T 2
h,i,j + U2

h,i,j

respectively and

return type function functionality
const <Type>Vector atan2(w, v) tan−1(wj/vj),
const <Type>Matrix atan2(N, M) tan−1(Ni,j/Mi,j) and
const <Type>Tensor atan2(U, T) tan−1(Uh,i,j/Th,i,j)

respectively which are applied to the subtensor element by element. Both argu-
ments must be the same size.

Complex functions: All complex floating-point SubVector, SubMatrix and
SubTensor classes include

return type magnitude, argument and norm functions
const <Type>Vector abs(v) arg(v) norm(v),
const <Type>Matrix abs(M) arg(M) norm(M) and
const <Type>Tensor abs(T) arg(T) norm(T)

respectively and

25

return type complex conjugate and polar functions
const <Type>ComplexVector conj(v) iconj(v) polar(v, w),
const <Type>ComplexMatrix conj(M) iconj(M) polar(M, N) and
const <Type>ComplexTensor conj(T) iconj(T) polar(T, U)

respectively which are applied to the subtensor element by element. Both argu-
ments of the polar function must be the same size.

2.3.3 Operators

Subscript: If v is an n subvector, M is an m×n submatrix and T is an l×m×n
subtensor, v[j] returns column j as a subscalar, M[i] returns row i as a subvector
and T[h] returns page h as a submatrix. This means that both M[i][j] and
T[h][i][j] are subscalars. The elements referenced by the respective subscalars
are at

location
s s.offset()

vj v.offset() + j*v.stride()

Mi,j M.offset() + j*M.stride1() + i*M.stride2()

Th,i,j T.offset() + j*T.stride1() + i*T.stride2() + h*T.stride3()

where 0 ≤ h < l, 0 ≤ i < m and 0 ≤ j < n. SVMT class libraries do not normally
check whether any of the zero based indices, h, i or j are in range or not.

Unary: All integral SubVector, SubMatrix and SubTensor classes except the
boolean subtensor classes and offsetSubVector include bitwise constant member
functions for unary operators

return type complement
const <Type>Vector ~v vj,
const <Type>Matrix ~M Mi,j and
const <Type>Tensor ~T Th,i,j

respectively.
Classes boolSubVector, boolSubMatrix and boolSubTensor include constant

member functions for unary operators

return type not
const boolVector !v ¬vj,
const boolMatrix !M ¬Mi,j and
const boolTensor !T ¬Th,i,j

respectively.
All SubVector, SubMatrix and SubTensor classes except boolSubVector,

boolSubMatrix, boolSubTensor and offsetSubVector include constant mem-
ber functions for unary operators

26

return type minus
const <Type><System>Vector -v −vj,
const <Type><System>Matrix -M −Mi,j and
const <Type><System>Tensor -T −Th,i,j

respectively and

return type plus
const <Type><System>SubVector +v +vj,
const <Type><System>SubMatrix +M +Mi,j and
const <Type><System>SubTensor +T +Th,i,j

respectively.

Cast: If s is a real subscalar, the cast (type conversion) operator (<type>)s

returns a real scalar. If s is a complex subscalar, the cast (type conversion)
operator (<Type>Complex)s returns a complex scalar.

Binary: All SubVector classes except offsetSubVector and boolSubVector

include element by element arithmetic operators

result scalar–vector vector–vector vector–scalar
multiply s*v s · vj v*w vj · wj v*s vj · s

divide s/v s/vj v/w vj/wj v/s vj/s
add s + v s+ vj v + w vj + wj v + s vj + s

subtract s - v s− vj v - w vj − wj v - s vj − s
which return const <Type>ComplexVector if either operand is complex or const
<Type>Vector if both operands are real.

All SubMatrix classes except boolSubMatrix include element by element
arithmetic operators

result scalar–matrix matrix–matrix matrix–scalar
multiply s*M s ·Mi,j M*N Mi,j ·Ni,j M*s Mi,j · s

divide s/M s/Mi,j M/N Mi,j/Ni,j M/s Mi,j/s
add s + M s+Mi,j M + N Mi,j +Ni,j M + s Mi,j + s

subtract s - M s−Mi,j M - N Mi,j −Ni,j M - s Mi,j − s
which return const <Type>ComplexMatrix if either operand is complex or const
<Type>Matrix if both operands are real.

All SubTensor classes except boolSubTensor include element by element
arithmetic operators

result scalar–tensor tensor–tensor tensor–scalar
multiply s*T s · Th,i,j T*U Th,i,j · Uh,i,j T*s Th,i,j · s

divide s/T s/Th,i,j T/U Th,i,j/Uh,i,j T/s Th,i,j/s
add s + T s+ Th,i,j T + U Th,i,j + Uh,i,j T + s Th,i,j + s

subtract s - T s− Th,i,j T - U Th,i,j − Uh,i,j T - s Th,i,j − s

27

which return const <Type>ComplexTensor if either operand is complex or const
<Type>Tensor if both operands are real.

Of course, if x and y 6= 0 are integers, then

x/y =
x− x%y

y
(2)

where

x%y =

{
−(|x| mod |y|) if x < 0 and
+(|x| mod |y|) otherwise.

(3)

All integral SubVector classes except boolSubVector and offsetSubVector

include element by element arithmetic operators

result scalar–vector vector–vector vector–scalar
remainder s%v s%vj v%w vj%wj v%s vj%s

which return const <Type>Vector.
All integral SubMatrix classes except boolSubMatrix include element by ele-

ment arithmetic operators

result scalar–matrix matrix–matrix matrix–scalar
remainder s%M s%Mi,j M%N Mi,j%Ni,j M%s Mi,j%s

which return const <Type>Matrix.
All integral SubTensor classes except boolSubTensor include element by ele-

ment arithmetic operators

result scalar–tensor tensor–tensor tensor–scalar
remainder s%T s%Th,i,j T%U Th,i,j%Uh,i,j T%s Th,i,j%s

which return const <Type>Tensor.
All integral SubVector classes except offsetSubVector and boolSubVector

and all integral SubMatrix and SubTensor classes except boolSubMatrix and
boolSubTensor include bitwise shift operators

return type shift left shift right
const <Type>Vector v << n vj << n v >> n vj >> n,
const <Type>Matrix M << n Mi,j << n M >> n Mi,j >> n and
const <Type>Tensor T << n Th,i,j << n T >> n Th,i,j >> n

respectively which are applied to the subtensor element by element where argu-
ment n ≥ 0 is an integer.

All SubVector, SubMatrix and SubTensor classes include input and output
operators

ostream& istream&

cout << v cout << v[j] << ’ ’ cin >> v cin >> v[j],
cout << M cout << M[i] cin >> M cin >> M[i] and
cout << T cout << T[h] cin >> T cin >> T[h]

28

respectively. On output, each element of a row vector is followed by a space or a
newline character so that there are no more than <Type><System>SubVector::columns()

elements on each line.
All real SubVector classes except boolSubVector and offsetSubVector in-

clude comparison operators

scalar–vector vector–vector vector–scalar
s < v s < vj v < w vj < wj v < s vj < s ∀j,
s <= v s ≤ vj v <= w vj ≤ wj v <= s vj ≤ s ∀j,
s > v s > vj v > w vj > wj v > s vj > s ∀j and
s >= v s ≥ vj v >= w vj ≥ wj v >= s vj ≥ s ∀j

which return type bool.
All real SubMatrix classes except boolSubMatrix include comparison opera-

tors

scalar–matrix matrix–matrix matrix–scalar
s < M s < Mi,j M < N Mi,j < Ni,j M < s Mi,j < s ∀i,j,
s <= M s ≤Mi,j M <= N Mi,j ≤ Ni,j M <= s Mi,j ≤ s ∀i,j,
s > M s > Mi,j M > N Mi,j > Ni,j M > s Mi,j > s ∀i,j and
s >= M s ≥Mi,j M >= N Mi,j ≥ Ni,j M >= s Mi,j ≥ s ∀i,j

which return type bool.
All real SubTensor classes except boolSubTensor include comparison opera-

tors

scalar–tensor tensor–tensor tensor–scalar
s < T s < Th,i,j T < U Th,i,j < Uh,i,j T < s Th,i,j < s ∀h,i,j,
s <= T s ≤ Th,i,j T <= U Th,i,j ≤ Uh,i,j T <= s Th,i,j ≤ s ∀h,i,j,
s > T s > Th,i,j T > U Th,i,j > Uh,i,j T > s Th,i,j > s ∀h,i,j and
s >= T s ≥ Th,i,j T >= U Th,i,j ≥ Uh,i,j T >= s Th,i,j ≥ s ∀h,i,j

which return type bool.
All SubVector classes include comparison operators

scalar–vector vector–vector vector–scalar
s == v s = vj v == w vj = wj v == s vj = s ∀j and
s != v s 6= vj v != w vj 6= wj v != s vj 6= s ∀j

which return type bool.
All SubMatrix classes include comparison operators

scalar–matrix matrix–matrix matrix–scalar
s == M s = Mi,j M == N Mi,j = Ni,j M == s Mi,j = s ∀i,j and
s != M s 6= Mi,j M != N Mi,j 6= Ni,j M != s Mi,j 6= s ∀i,j

which return type bool.
All SubTensor classes include comparison operators

29

scalar–tensor tensor–tensor tensor–scalar
s == T s = Th,i,j T == U Th,i,j = Uh,i,j T == s Th,i,j = s ∀h,i,j and
s != T s 6= Th,i,j T != U Th,i,j 6= Uh,i,j T != s Th,i,j 6= s ∀h,i,j

which return type bool.
All integral SubVector classes except boolSubVector and offsetSubVector

include element by element bitwise operators

operation scalar–vector vector–vector vector–scalar
AND s&v s&vj v&w vj&wj v&s vj&s
XOR s^v s^vj v^w vj^wj v^s vj^s

OR s|v s|vj v|w vj|wj v|s vj|s

which return const <Type>Vector.
All integral SubMatrix classes except boolSubMatrix include element by ele-

ment bitwise operators

operation scalar–matrix matrix–matrix matrix–scalar
AND s&M s&Mi,j M&N Mi,j&Ni,j M&s Mi,j&s
XOR s^M s^Mi,j M^N Mi,j^Ni,j M^s Mi,j^s

OR s|M s|Mi,j M|N Mi,j|Ni,j M|s Mi,j|s

which return const <Type>Matrix.
All integral SubTensor classes except boolSubTensor include element by ele-

ment bitwise operators

operation scalar–tensor tensor–tensor tensor–scalar
AND s&T s&Th,i,j T&U Th,i,j&Uh,i,j T&s Th,i,j&s
XOR s^T s^Th,i,j T^U Th,i,j^Uh,i,j T^s Th,i,j^s

OR s|T s|Th,i,j T|U Th,i,j|Uh,i,j T|s Th,i,j|s

which return const <Type>Tensor. Both operands of all vector–vector, matrix-
matrix and tensor-tensor binary operations must be the same size.

Assignment: All SubVector classes include simple assignment operators

return type vector–vector vector–scalar
<Type><System>SubVector& v = w vj ← wj v = s vj ← s

which return a reference to the left hand side.
All SubMatrix and SubTensor classes include simple assignment operators

return type matrix–matrix matrix–scalar
<Type><System>SubMatrix& M = N Mi,j ← Ni,j M = s Mi,j ← s and

return type tensor–tensor tensor–scalar
<Type><System>SubTensor& T = U Th,i,j ← Uh,i,j T = s Th,i,j ← s

30

respectively which return a reference to the left hand side.

All SubVector classes except offsetSubVector and boolSubVector include
assignment operators

operation vector–vector vector–scalar
multiply v *= w vj ← vj · wj v *= s vj ← vj · s,

divide v /= w vj ← vj/wj v /= s vj ← vj/s,
add v += w vj ← vj + wj v += s vj ← vj + s and

subtract v -= w vj ← vj − wj v -= s vj ← vj − s

return a reference of type <Type><System>SubVector& to the left hand side.

All SubMatrix classes except boolSubMatrix include assignment operators

operation matrix–matrix matrix–scalar
multiply M *= N Mi,j ←Mi,j ·Ni,j M *= s Mi,j ←Mi,j · s,

divide M /= N Mi,j ←Mi,j/Ni,j M /= s Mi,j ←Mi,j/s,
add M += N Mi,j ←Mi,j +Ni,j M += s Mi,j ←Mi,j + s and

subtract M -= N Mi,j ←Mi,j −Ni,j M -= s Mi,j ←Mi,j − s

return a reference of type <Type><System>SubMatrix& to the left hand side.

All SubTensor classes except boolSubTensor include assignment operators

operation tensor–tensor tensor–scalar
multiply T *= U Th,i,j ← Th,i,j · Uh,i,j T *= s Th,i,j ← Th,i,j · s,

divide T /= U Th,i,j ← Th,i,j/Uh,i,j T /= s Th,i,j ← Th,i,j/s,
add T += U Th,i,j ← Th,i,j + Uh,i,j T += s Th,i,j ← Th,i,j + s and

subtract T -= U Th,i,j ← Th,i,j − Uh,i,j T -= s Th,i,j ← Th,i,j − s

return a reference of type <Type><System>SubTensor& to the left hand side.

All integral <Type>SubVector, <Type>SubMatrix and <Type>SubTensor classes
include modulo and assign operators

return type vector–vector vector–scalar
<Type>SubVector& v %= w vj ← vj%wj v %= s vj ← vj%s,

return type matrix–matrix matrix–scalar
<Type>SubMatrix& M %= N Mi,j ←Mi,j%Ni,j M %= s Mi,j ←Mi,j%s and

return type tensor–tensor tensor–scalar
<Type>SubTensor& T %= U Th,i,j ← Th,i,j%Uh,i,j T %= s Th,i,j ← Th,i,j%s

respectively which return a reference to the left hand side.

Both operands of all vector–vector, matrix-matrix and tensor-tensor assign-
ment operations must be the same size.

31

2.4 SubArray0, SubArray1, SubArray2 and SubArray3 classes

The SubArray0, SubArray1, SubArray2 and SubArray3 classes inherit everything
from SubScalar, SubVector, SubMatrix and SubTensor classes respectively except
the constructors and resize member functions.

2.4.1 Constructors

Explicit Constructors

<Type><System>SubArray0 s(p, o),
<Type><System>SubArray1 v(p, o, n1, s1),
<Type><System>SubArray2 M(p, o, n2, s2, n1, s1) and
<Type><System>SubArray3 T(p, o, n3, s3, n2, s2, n1, s1)

permit the application programmer to reference the elements of an ordinary one
dimensional array with a SubScalar, SubVector, SubMatrix or SubTensor respec-
tively by passing a pointer p of type <type>* to the beginning of the one dimen-
sional array, an offset o of type Offset from the beginning of the one dimensional
array to the first element of the subtensor and a stride s1, s2 or s3 of type Stride
and an extent n1, n2 or n3 of type Extent for each dimension. The constructors
can not check whether the one dimensional array actually contains the subtensor
or not.

Copy Constructors

<Type><System>SubArray0 t(s),
<Type><System>SubArray1 w(v),
<Type><System>SubArray2 N(M) and
<Type><System>SubArray3 U(T)

simply copy the attributes of an existing subarray not the underlying one dimen-
sional array.

Default Constructors

<Type><System>SubArray1 v,
<Type><System>SubArray2 M and
<Type><System>SubArray3 T

create an empty subvector, submatrix and subtensor respectively.
The SVMT class library developer may derive SubArray0, SubArray1, SubArray2

and SubArray3 classes from SubScalar, SubVector, SubMatrix and SubTensor

classes respectively or implement them as unrelated classes with equivalent func-
tionality.

32

2.4.2 Functions

All SubArray1, SubArray2 and SubArray3 classes include member functions

return type explicit resize
<Type><System>SubArray1& v.resize(p, o, n1, s1),
<Type><System>SubArray2& M.resize(p, o, n2, s2, n1, s1) and
<Type><System>SubArray3& T.resize(p, o, n3, s3, n2, s2, n1, s1)

respectively which correspond to the respective explicit constructors.
All SubArray1, SubArray2 and SubArray3 classes include member functions

return type copy resize
<Type><System>SubArray1& w.resize(v),
<Type><System>SubArray2& N.resize(M) and
<Type><System>SubArray3& U.resize(T)

respectively which correspond to the respective copy constructors.
All SubArray1, SubArray2 and SubArray3 classes include member functions

return type default resize
<Type><System>SubArray1& v.resize(),
<Type><System>SubArray2& M.resize() and
<Type><System>SubArray3& T.resize()

respectively which correspond to the respective default constructors.

2.5 Vector, Matrix and Tensor classes

The Vector, Matrix and Tensor classes are derived from the SubVector, SubMatrix
and SubTensor classes respectively. Their constructors allocate a one dimensional
array for them automatically when they are created and their destructors deallo-
cate it automatically for them when they are destroyed. Otherwise, they inherit
everything from their respective base classes except constructors and resize and
free member functions.

2.5.1 Constructors

Explicit Constructors

<Type><System>Vector v(n),
<Type><System>Matrix M(m, n) and
<Type><System>Tensor T(l, m, n)

create an uninitialized n vector, m×n matrix and l×m×n tensor respectively.
The second and third arguments default to a value of +1 if omitted.

33

Explicit Constructors

<Type><System>Vector v(n, s),
<Type><System>Matrix M(m, n, s) and
<Type><System>Tensor T(l, m, n, s)

create an n vector, m×n matrix and l×m ×n tensor respectively and initialize
each element to scalar value s.

Explicit Constructors

<Type>Vector v(n, s, t),
<Type>Matrix M(m, n, s, t) and
<Type>Tensor T(l, m, n, s, t)

create a real n vector, m×n matrix and l×m×n tensor respectively then initialize
each row such that vj = s+ j · t, Mi,j = s+ j · t and Th,i,j = s+ j · t.

Copy constructors

<Type><System>Vector w = v,
<Type><System>Matrix N = M and
<Type><System>Tensor U = T

create a new vector w, a new matrix N and a new tensor U the same size as
vector v, matrix M and tensor T respectively and copy every element of vector v
to vector w, matrix M to matrix N and tensor T to tensor U .

Default constructors

<Type><System>Vector v,
<Type><System>Matrix M and
<Type><System>Tensor T

create an empty vector, matrix and tensor respectively.

Explicit Constructors

<Type>ComplexVector w = v,
<Type>ComplexMatrix N = M and
<Type>ComplexTensor U = T

compose a new complex vector w, matrix N and tensor U from a real subvector
v, a real submatrix M and a real subtensor T respectively. The imaginary parts
are set to zero.

34

Explicit Constructors

<Type>ComplexVector w(v, u),
<Type>ComplexMatrix N(M, L) and
<Type>ComplexTensor U(T, S)

compose a new complex vector w, matrix N and tensor U from a pair of real sub-
vectors v and u, a pair of real submatrices M and L and a pair of real subtensors
T and S respectively which represent the real and imaginary parts.

2.5.2 Functions

All Vector, Matrix and Tensor classes include member functions

return <Type><System> <Type><System> <Type><System>

type Vector& Matrix& Tensor&

explicit v.resize(n) M.resize(m, n) T.resize(l, m, n),
explicit v.resize(n, s) M.resize(m, n, s) T.resize(l, m, n, s),
explicit v.resize(n, s, t) M.resize(m, n, s, t) T.resize(l, m, n, s, t),

copy w.resize(v) N.resize(M) U.resize(T) and
default v.resize() M.resize() T.resize()

and all complex Vector, Matrix and Tensor classes include member functions

return <Type>Complex <Type>Complex <Type>Complex

type Vector& Matrix& Tensor&

explicit w.resize(v) N.resize(M) U.resize(T) and
explicit w.resize(v, u) N.resize(M, L) U.resize(T, S)

corresponding to each of the constructors.
The resize function may deallocate the original one dimensional array before it

allocates a new one dimensional array and all the data may be lost. Any subtensor
of a tensor created before the resize function is applied to the tensor references a
one dimensional array which may no longer exist after the resize function returns.

The application programmer should avoid using the resize function but it is
essential for tasks like creating an array of tensors which have different sizes. The
default constructor is used to create the array of tensors then the resize function
is applied to each element in order to size it appropriately.

2.6 SubSquare and Square (Matrix) classes

2.6.1 SubSquare classes

The SubSquare classes inherit almost all of the functions and operations from the
respective SubMatrix classes but <Type><System>SubSquare functions and oper-
ations return boolSquare, <Type><System>Square, <Type><System>SubSquare

35

or <Type><System>SubSquare& where <Type><System>SubMatrix functions and
operations return boolMatrix, <Type><System>Matrix, <Type><System>SubMatrix
or <Type><System>SubMatrix& respectively whenever the result must be a square
matrix. The explicit SubSquare constructor

<Type><System>SubSquare M(h, o, m, s2, s1),

static member function allocate

return type allocate memory
<Type><System>Handle allocate(m)

and member function resize

return type explicit resize
<Type><System>SubSquare& M.resize(h, o, m, s2, s1)

were redefined so that all SubSquare objects are created with extent1() == m

== extent2().
All SubMatrix classes include member functions

return type function
<Type><System>SubSquare M.subsquare(i, m, s2, j, s1)

where stride s1 =1 if omitted and offset j=0 if omitted which return a reference
to a square submatrix of a submatrix.

The SubSquare classes include functions which apply only to square matrices.

The transpose

return type transpose
<Type><System>SubSquare& M.transpose()

member function actually transposes the elements of the original square submatrix
M in place and returns a reference to M.

Cholesky decomposition: All real and complex floating-point SubSquare classes
include member function

return type function solves
const offsetVector p = M.lld() PMP T = (LD)(LD)T

which decomposes symmetric matrix M in-place ignoring the superdiagonal ele-
ments. It returns the permutation vector p required to obtain the permutation
PMP T of the rows and columns of symmetric matrix M . The superdiagonal
elements of M are left unchanged but matrix LD is packed into the remaining
elements of M . If symmetric matrix M is real, the result is undefined unless M
is positive definite.

36

The inverse

return type inverse
const <Type><System>Square M.i(r)

member function returns a square matrix which is the inverse of the original
floating-point square submatrix M without disturbing it but member function

return type inverse
<Type><System>SubSquare& M.invert(r)

inverts the original floating-point square submatrix M in place and returns a ref-
erence to M. An optional argument r of type <type> defaults to zero if omitted.
The application programmer must provide the actual definition for both of these
member functions.

2.6.2 Square classes

The Square classes inherit all of the functions and operations from the respective
SubSquare classes except constructors and resize member functions. The explicit
Square constructors

<Type><System>Square M(m),
<Type><System>Square M(m, s) and
<Type><System>Square M(m, s, t)

create an uninitialized m×m square matrix, an m×m square matrix initialized with
Mi,j = s and an m×m square matrix initialized with Mi,j = s+ j · t respectively
and member functions

return type explicit resize
<Type><System>Square& M.resize(m),
<Type><System>Square& M.resize(m, s) and
<Type><System>Square& M.resize(m, s, t)

are the respective reconstructors.
Neither SubSquare or Square objects can be constructed or reconstructed from

SubMatrix or Matrix objects.

3 Convention

There are two basic differences between C and Fortran style arrays. First, For-
tran subscripts begin with 1 but C subscripts begin with 0. Second, C subscripts
appear in reverse order from Fortran subscripts so C style arrays appear to be the
transpose of Fortran style arrays. Consequently, it is natural for C programmers
to think of one dimensional arrays as row vectors instead of column vectors and

37

to think of two dimensional arrays as collections of row vectors instead of collec-
tions of column vectors. This point of view has certain practical and conceptual
advantages. For example, the elements of a two dimensional C style array are
stored in memory in the same order that they appear in the I/O stream.

It is easy to convert a Fortran style column vector oriented expression into a C
style row vector oriented expression. Just transpose the expression then replace
each vector and matrix with its transpose so that the Fortran style matrix-vector
dot product b = ATx becomes the C style vector-matrix dot product b = xAT

for example. The conversion has no effect on element-by-element functions and
operations.

In order to accommodate Fortran programmers with a minimum of inconve-
nience, operator () was overloaded and alternate forms of some member func-
tions were provided to support Fortran style subscripts. Fortran programmers
are still obliged to reverse the extent arguments in explicit constructors such as

m×n matrix M <Type><System>Matrix M(n, m)

m×n×p tensor T <Type><System>Tensor T(p, n, m)

or to define pseudo constructors like this:

inline

const

<Type><System>Matrix <Type><System>Matrix_(Extent m, Extent n) {

return <Type><System>Matrix(n, m); }

which can be used like this:

<Type><System>Matrix M = <Type><System>Matrix_(m, n);

From the Fortran programmers’ point of view, the function p = M.lud() ap-
pears to solve MP T = (LD)U so they might use triangular system solvers x =

v.up (M, p) and w = x.ld (M) to solve v = MTw = (UP)T (LD)Tw = (UP)Tx.
The following tables cross reference the original and alternate forms of member

operators and functions where i, j, k and l ∈ {1, 2, . . .} are indices, n1, n2 and
n3 ∈ {0, 1, 2, . . .} are extents, s1, s2 and s3 ∈ {. . . ,−2,−1,+0,+1,+2, . . .} are
strides, h is a handle, o is an offset, s is a scalar, p is a permutation vector object,
v and w are vector objects, M and N are matrix objects and T and U are tensor
objects.

v(i) v[i-1]

M(j) M[j-1]

M(i, j) M[j-1][i-1]

T(k) T[k-1]

T(j, k) T[k-1][j-1]

T(i, j, k) T[k-1][j-1][i-1]

38

v.contains (i, n1, s1) v.contains(i-1, n1, s1)

M.contains (j, n2, s2) M.contains(j-1, n2, s2)

M.contains (i, n1, s1, M.contains(j-1, n2, s2,

j, n2, s2) i-1, n1, s1)

T.contains (k, n3, s3) T.contains(k-1, n3, s3)

T.contains (j, n2, s2, T.contains(k-1, n3, s3,

k, n3, s3) j-1, n2, s2)

T.contains (i, n1, s1, T.contains(k-1, n3, s3,

j, n2, s2, j-1, n2, s2,

k, n3, s3) i-1, n1, s1)

v.sub (i, n1, s1) v.sub(i-1, n1, s1)

M.sub (j, n2, s2) M.sub(j-1, n2, s2)

M.sub (i, n1, s1, M.sub(j-1, n2, s2,

j, n2, s2) i-1, n1, s1)

T.sub (k, n3, s3) T.sub(k-1, n3, s3)

T.sub (j, n2, s2, T.sub(k-1, n3, s3,

k, n3, s3) j-1, n2, s2)

T.sub (i, n1, s1, T.sub(k-1, n3, s3,

j, n2, s2, j-1, n2, s2,

k, n3, s3) i-1, n1, s1)

M.subsquare (j, n2, s2) M.subsquare(j-1, n2, s2)

M.subsquare (i, s1, j, n2, s2) M.subsquare(j-1, n2, s2, i-1, s1)

v.swap (i, l) v.swap(i-1, l-1)

M.swap (j, l) M.swap(j-1, l-1)

T.swap (k, l) T.swap(k-1, l-1)

M.resize (h, o, n1, s1, M.resize(h, o, n2, s2,

n2, s2) n1, s1)

T.resize (h, o, n1, s1, T.resize(h, o, n3, s3,

n2, s2, n2, s2,

n3, s3) n1, s1)

M.allocate (n1, n2) M.allocate(n2, n1)

T.allocate (n1, n2, n3) T.allocate(n3, n2, n1)

M.resize (n1, n2) M.resize(n2, n1)

M.resize (n1, n2, s) M.resize(n2, n1, s)

M.resize (n1, n2, s, t) M.resize(n2, n1, s, t)

T.resize (n2, n3) T.resize(n3, n2)

T.resize (n1, n2, n3) T.resize(n3, n2, n1)

T.resize (n1, n2, n3, s) T.resize(n3, n2, n1, s)

T.resize (n1, n2, n3, s, t) T.resize(n3, n2, n1, s, t)

39

v.even () v.odd()

M.even () M.odd()

T.even () T.odd()

v.odd () v.even()

M.odd () M.even()

T.odd () T.even()

v.min () 1 + v.min()

v.max () 1 + v.max()

v.dot (w) w.dot(v)

v.dot (M) M.dot(v)

M.dot (v) v.dot(M)

M.dot (N) N.dot(M)

v.pl (p, M) v.up(M, p)

v.up (M, p) v.pl(p, M)

v.l (M) v.u(M)

v.u (M) v.l(M)

v.pld (p, M) v.dup(M, p)

v.dup (M, p) v.pld(p, M)

v.ld (M) v.du(M)

v.du (M) v.ld(M)

v.above (w) v.aside(w)

v.aside (w) v.above(w)

v.aside (M) v.above(M)

M.aside (v) M.above(v)

M.aside (N) M.above(N)

M.above (N) M.aside(N)

T.above (U) T.aside(U)

T.aside (U) T.above(U)

4 Error Detection

Application programmers try to detect and eliminate all fatal programming errors
before the application is placed into service because, even if they can be detected
efficiently, there probably isn’t much that can be done about them after the
application is placed into service except to log them on some sort of “black box”
recorder and restart the application.

40

Most of the math errors inherited from built-in types cannot be detected until
run-time. Other programming errors cannot be detected until run-time because
vector, matrix and tensor size information is not generally available at compile-
time and the one dimensional arrays which they reference must be allocated and
deallocated dynamically. These errors include containment, range, conformance,
reference and memory errors.

5 Optimization

References

[1] Gene H. Golub and Charles F. Van Loan. Matrix Computations Second Edi-
tion. The Johns Hopkins University Press, 1989.

[2] William H. Press, Saul A. Teukolsky, William T. Vettering, and Brian P.
Flannery. Numerical Recipes in C The Art of Scientific Computing Second
Edition. Cambridge University Press, 1992.

[3] Bjarne Stroustrup. The C++ Programming Language Third Edition. Addison-
Wesley Publishing Company, September 1997.

41

Index

<Name>, 2
<System>, 2
<Type>, 2
<type>, 2
Extent, 3
Handle, 3
Offset, 3
Stride, 3
above(...), 23
abs(...), 5, 25
acos(...), 5, 24
acosh(...), 5, 24
afore(...), 23
all(...), 21
allocate(...), 9, 36
any(...), 21
apply(...), 24
arg(...), 5, 25
aside(...), 22
asin(...), 5, 24
asinh(...), 5, 24
atan(...), 5, 24
atan2(...), 25
atanh(...), 5, 24
cdft(...), 15
ceil(...), 25
columns(), 8
conj(...), 5, 26
contains(...), 11
cos(...), 5, 24
cosh(...), 5, 24
dft(...), 15
diag(), 13
diag12(), 13
diag23(), 13
diag31(), 13
dot(), 18
dot(...), 18
du(...), 20
dup(...), 20

empty(), 6, 8
eq(...), 21
even(), 14
exp(...), 5, 24
extent1(), 8
extent2(), 8
extent3(), 8
floor(...), 25
free(), 9
gather(...), 22
ge(...), 21
get(...), 6
gt(...), 21
handle(), 8
hypot(...), 25
i(..), 37
iconj(...), 5, 26
imag(), 5, 14
index(), 21
invert(..), 37
kron(...), 23
l(...), 19
ld(...), 20
le(...), 21
lld(), 36
log(...), 5, 24
lt(...), 21
lud(), 19
max(), 17
max(...), 17

binary, 17
min(), 17
min(...), 17

binary, 17
ne(...), 21
norm(...), 5, 25
odd(), 14
offset(), 8
pack(...), 15, 18
pl(...), 19

42

pld(...), 20
polar(...), 5, 26
pq(...), 20
put(...), 6
q(...), 20
qrd(), 19
r(), 13, 14
r1(), 14
r2(), 14
r3(), 14
ramp(), 15
rdft(...), 15
real(), 5, 14
resize(), 10, 33, 35
resize(...), 9, 33, 35–37
reverse(), 13, 14
reverse1(), 14
reverse2(), 14
reverse3(), 14
rotate(...), 16
scatter(...), 22
setw(...), 8
sgn(...), 25
shift(...), 16
sin(...), 5, 24
sinh(...), 5, 24
sqrt(...), 5, 24
stride(), 8
stride1(), 8
stride2(), 8
stride3(), 8
sub(...), 10
submatrix(...), 12
subsquare(...), 36
subtensor(...), 12
subvector(...), 12
sum(), 17, 18
svd(), 19
swap(...), 16

binary, 16
t(), 13
t12(), 13
t23(), 13

t31(), 13
tan(...), 5, 24
tanh(...), 5
transpose(), 36
u(...), 19
up(...), 19
zeros(), 21

Cholesky, 36
constructor

copy, 4, 6, 7, 32, 34
default, 4, 34
explicit, 4, 6, 7, 32–37

decomposition
LL, 36
LU , 19
QR, 19
singular value, 19

diagonal, 13

Householder
reflections, 19
vector, 19, 20

operator
assignment, 30, 31
binary

arithmetic, 5, 27, 28
bitwise, 30
comparison, 5, 29, 30

cast, 7, 27
input, 5, 29
output, 5, 29
shift, 28
subscript, 26
unary

complement, 26
minus, 5, 27
not, 26
plus, 5, 27

reverse, 13, 14

transpose, 13, 36

43

